62 research outputs found

    Correction to: Determinant Roles of Dendritic Cell-expressed Notch Delta-like and Jagged Ligands on Anti-tumor T-cell Immunity

    Get PDF
    Background: Notch intercellular communication instructs tissue-specific T-cell development and function. In this study, we explored the roles of dendritic cell (DC)-expressed Notch ligands in the regulation of T-cell effector function. Methods: We generated mice with CD11c lineage-specific deletion of Notch Delta-like ligand (Dll)1 and Jagged (Jag)2. Using these genetically-ablated mice and engineered pharmacological Notch ligand constructs, the roles of various Delta-like and Jagged ligands in the regulation of T-cell-mediated immunity were investigated. We assessed tumor growth, mouse survival, cytokine production, immunophenotyping of myeloid and lymphoid populations infiltrating the tumors, expression of checkpoint molecules and T-cell function in the experimental settings of murine lung and pancreatic tumors and cardiac allograft rejection. Correlative studies were also performed for the expression of NOTCH ligands, NOTCH receptors and PD-1 on various subsets of myeloid and lymphoid cells in tumor-infiltrating immune cells analyzed from primary human lung cancers. Results: Mice with CD11c lineage-specific deletion of Notch ligand gene Dll1, but not Jag2, exhibited accelerated growth of lung and pancreatic tumors concomitant with decreased antigen-specific CD8+ T-cell functions and effector-memory (Tem) differentiation. Increased IL-4 but decreased IFN-γ production and elevated populations of T-regulatory and myeloid-derived suppressor cells were observed in Dll1-ablated mice. Multivalent clustered DLL1-triggered Notch signaling overcame DC Dll1 deficiency and improved anti-tumor T-cell responses, whereas the pharmacological interference by monomeric soluble DLL1 construct suppressed the rejection of mouse tumors and cardiac allograft. Moreover, monomeric soluble JAG1 treatment reduced T-regulatory cells and improved anti-tumor immune responses by decreasing the expression of PD-1 on CD8+ Tem cells. A significant correlation was observed between DC-expressed Jagged and Delta-like ligands with Tem-expressed PD-1 and Notch receptors, respectively, in human lung tumor-infiltrates.Conclusion: Our data show the importance of specific expression of Notch ligands on DCs in the regulation of Tcell effector function. Thus, strategies incorporating selectively engineered Notch ligands could provide a novel approach of therapeutics for modulating immunity in various immunosuppressive conditions including cancer. Keywords: Delta-like notch ligands, Jagged, Notch receptors, Lung carcinoma, Tumor infiltrating immune cells, Heart allograft rejection, Dendritic cells, CD8 T-cells, Regulatory T-cells, Cancer immunotherap

    Tillförlitlighet hos information som hanteras av flera användare och genom flera system

    No full text
    Ribosome recycling factor (RRF), coded for by the frr locus, is involved in the disassembly of post-termination complexes and recycling of the ribosomes for a fresh round of initiation in bacteria and in eukaryotic organelles. In a cross-species-complementation experiment, it was shown that the Thermus thermophilus RRF protein lacking five amino acids from its C-terminal end (Δ\DeltaC5TthRRF) but not the full-length protein (TthRRF) complemented Escherichia coli for its frrts phenotype. It was also shown that the Mycobacterium tuberculosis RFF protein (MtuRRF) did not complement E. coli LJ14 for frrts. However, simultaneous expression of elongation factor G (EFG) and RRF from M. tuberculosis resulted in complementation of E. coli LJ14. Here it is shown that unlike Δ\DeltaC5TthRRF, an equivalent mutant of MtuRRF lacking six amino acids from its C-terminal end (Δ\DeltaC6MtuRRF) did not complement E. coli LJ14. Surprisingly, Δ\DeltaC6MtuRRF failed to complement the strain even in the presence of homologous EFG (MtuEFG). The biochemical and biophysical characterization of these proteins suggested that the mutant RRF folded properly. However, ribosome-binding assays showed that the mutant protein was compromised in its binding to E. coli ribosomes. It is suggested that the conserved amino acids at the C-terminal end of the RRFs contribute to their residency on ribosomes and that the specific interactions between RRF and EFG are crucial in the disassembly of the termination comple

    A role for F-BAR protein Rga7p during cytokinesis in S. pombe

    Full text link
    xviii, 183 hlm.; 19 c

    Nat. Cell Biol.

    No full text

    Biochem. Soc. Trans.

    No full text

    M2

    No full text
    corecore